Fundamental transformations for quadrilateral lattices: first potentials and t-functions, symmetric and pseudo-Egorov reductions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2001 J. Phys. A: Math. Gen. 3410413
(http://iopscience.iop.org/0305-4470/34/48/307)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.101
The article was downloaded on 02/06/2010 at 09:45

Please note that terms and conditions apply.

Fundamental transformations for quadrilateral lattices: first potentials and τ-functions, symmetric and pseudo-Egorov reductions

Manuel Mañas
Departamento de Física Teórica II, Universidad Complutense, E28040 Madrid, Spain
E-mail: manuel@darboux.fis.ucm.es

Received 17 April 2001, in final form 3 September 2001
Published 23 November 2001
Online at stacks.iop.org/JPhysA/34/10413

Abstract

We find the behaviour of first potentials and τ-functions for quadrilateral lattices under vectorial fundamental transformations. We also give those transformations which preserve the symmetric and pseudo-Egorov reductions.

PACS numbers: 05.50.+q, 02.30.-f

1. Introduction

Integrable discrete equations seems to be essential in the understanding of integrable systems. On the one hand many integrable nonlinear PDEs are continuous limits of integrable $\mathrm{P} \Delta \mathrm{Es}$ (partial difference equations). On the other hand many of these integrable nonlinear PDEs are reductions or connected with differential geometry, in particular with the theory of conjugate nets and its reductions. Sometime ago the German geometer Sauer discussed for example discrete pseudo-spherical surfaces. Recently, the group of Bobenko and Pinkall and the group of Doliwa and Santini have given to the theory of integrable lattices an almost closed form. These integrable lattices contain as reductions many of the mentioned discrete integrable systems and constitute a cornerstone in the theory of integrable systems. Among these lattices one finds the quadrilateral, circular, Egorov and asymptotic lattices.

In this paper we investigate how the first potentials and τ-functions for quadrilateral lattices transform under fundamental transformations. Using this information we search for those fundamental transformations which reduce to symmetric lattices and pseudo-Egorov lattices. The layout of the paper is as follows: in section 2 we review some well known basic aspects of quadrilateral lattices, reductions and transformations. In section 3 we present the transformation of both first potentials and τ-functions under vectorial fundamental transformations. Finally, section 4 is devoted to characterizing those vectorial fundamental transformations preserving symmetric and pseudo-Egorov lattices.

2. Quadrilateral lattices

Among the N-dimensional lattices $\boldsymbol{x}: \mathbb{Z}^{N} \rightarrow \mathbb{R}^{N}$ there is a distinguished class for which the elementary quadrilaterals are planar $[7,8,15]$: the so-called quadrilateral lattice. The planarity condition can be expressed by the linear equation for suitably renormalized tangent vectors $\mathfrak{C}_{i}(\boldsymbol{n}) \in \mathbb{R}^{N}$

$$
\begin{equation*}
\Delta_{j} \mathfrak{C}_{i}=\left(T_{j} Q_{i j}\right) \mathfrak{C}_{j} \quad i, j=1, \ldots, N \quad i \neq j \tag{1}
\end{equation*}
$$

with its compatibility conditions being the following discrete Darboux equations [2]:

$$
\Delta_{k} Q_{i j}=\left(T_{k} Q_{i k}\right) Q_{k j} \quad i, j \text { and } k \text { different. }
$$

Here we are using the notation $\Delta_{j}:=T_{j}-1$ where $T_{j} f\left(n_{1}, \ldots, n_{N}\right)=$ $f\left(n_{1}, \ldots, n_{j-1}, n_{j}+1, n_{j+1}, \ldots, n_{N}\right)$. The points \boldsymbol{x} of the lattice satisfy

$$
\Delta_{i} x=\left(T_{i} H_{i}\right) \mathfrak{C}_{i} \quad i=1, \ldots, N
$$

where the H_{i} fulfil

$$
\begin{equation*}
\Delta_{i} H_{j}=Q_{i j} T_{i} H_{i} \quad i, j=1, \ldots, N \quad i \neq j \tag{2}
\end{equation*}
$$

In the above formulae, T_{i} is the translation operator in the discrete variable n_{i} and $\Delta_{i}=T_{i}-1$ is the corresponding partial difference operator.

2.1. Backward representation, first potentials and τ-functions

As was explained in [9] there is an equivalent description in terms of backward geometrical objects, $\tilde{\mathfrak{C}}_{i}, \tilde{H}_{i}, \tilde{Q}_{i j}$ which satisfy

$$
\Delta_{i} \tilde{\mathfrak{C}}_{j}=\tilde{Q}_{i j} T_{i} \tilde{\mathfrak{C}}_{i} \quad \Delta_{j} \tilde{H}_{i}=\left(T_{j} \tilde{Q}_{i j}\right) \tilde{H}_{j}
$$

There exist first potentials $\rho_{i}, i=1, \ldots, N,[9]$ such that

$$
\mathfrak{C}_{i}=-\rho_{i} T_{i} \tilde{\mathfrak{C}}_{i} \quad T_{i} H_{i}=-\frac{1}{\rho_{i}} \tilde{H}_{i} .
$$

Moreover, as was proven in [9] we have

$$
\rho_{j} T_{j} \tilde{Q}_{i j}=\rho_{i} T_{i} Q_{j i}
$$

where the first potentials ρ_{i} are characterized by

$$
\begin{equation*}
\frac{T_{j} \rho_{i}}{\rho_{i}}=1-\left(T_{i} Q_{j i}\right)\left(T_{j} Q_{i j}\right) \tag{3}
\end{equation*}
$$

The above equation ensures, as was noticed in [9], the existence of a second potential τ such that

$$
\rho_{i}=\frac{T_{i} \tau}{\tau}
$$

which essentially is the τ-function of the quadrilateral lattice as was discussed in [5].

2.2. Reduced lattices

Quadrilateral lattices $\boldsymbol{x}: \mathbb{Z}^{N} \rightarrow \mathbb{R}^{N}$ for which each quadrilateral is inscribed in a circle are called circular or cyclid lattices [1,3,6,10,14]. It can be shown that the constraint

$$
\begin{equation*}
\mathfrak{C}_{i} \cdot T_{i}\left(\mathfrak{C}_{j}\right)+\mathfrak{C}_{j} \cdot T_{j}\left(\mathfrak{C}_{i}\right)=0 \quad i \neq j \tag{4}
\end{equation*}
$$

for the tangent vectors is the equivalent circularity property. The first potentials for the circular lattices satisfy $\rho_{i}=\left\|\mathfrak{C}_{i}\right\|^{2}$ [9]. In [9] the symmetric and Egorov lattices were introduced-the

Egorov lattice was also considered by Wolfang Schief. The symmetric lattice appears when backward and forward rotation coefficients are the same, which can be cast in the condition

$$
\left(T_{i} Q_{j i}\right)\left(T_{j} Q_{k j}\right)\left(T_{k} Q_{i k}\right)=\left(T_{j} Q_{i j}\right)\left(T_{i} Q_{k i}\right)\left(T_{k} Q_{j k}\right) \quad i, j \text { and } k \text { different. }
$$

This symmetric case is also characterized by the following relation among first potentials and rotation coefficients:

$$
\begin{equation*}
\rho_{j} T_{j} Q_{i j}=\rho_{i} T_{i} Q_{j i} \tag{5}
\end{equation*}
$$

A circular, symmetric and diagonal invariant lattice is called an Egorov lattice; it was proven that Egorov lattices are characterized by

$$
\begin{equation*}
\mathfrak{C}_{i} \cdot T_{i}\left(\mathfrak{C}_{j}\right)=0 \quad i \neq j . \tag{6}
\end{equation*}
$$

Finally, in [12] pseudo-circular and pseudo-Egorov lattices in pseudo-Euclidean space $R_{p, q}, p+q=N$, were introduced. Here, we have a non-degenerate symmetric bilinear form

$$
\boldsymbol{X} \cdot \tilde{\boldsymbol{X}}:=\sum_{i=1}^{N} \epsilon_{i} X_{i} \tilde{X}_{i} \quad \text { with } \quad \epsilon_{i}:= \begin{cases}1 & \\ -1 & \\ -1, \ldots, p \\ & i=p+1, \ldots, p+q\end{cases}
$$

which can be written as

$$
\boldsymbol{X} \cdot \tilde{\boldsymbol{X}}=\left(X_{1}, \ldots, X_{N}\right) I_{p, q}\left(\begin{array}{c}
\tilde{X}_{1} \\
\vdots \\
\tilde{X}_{N}
\end{array}\right)
$$

with

$$
I_{p, q}:=\operatorname{diag}\left(\epsilon_{1}, \ldots, \epsilon_{N}\right) .
$$

The pseudo-circular and pseudo-Egorov lattices are defined as in (4) and (6) but replacing the Euclidean scalar product by the pseudo-Euclidean scalar product has been introduced. As was pointed out to me by Adam Doliwa during this SIDE IV conference, these pseudo-circular lattices should correspond, through a convenient stereographic projection, to lattices in quadric surfaces as in [4].

2.3. The discrete fundamental transformation

The fundamental transformation of Jonas for conjugate nets was discretized to quadrilateral lattices by Doliwa, Mañas and Santini [7,13]. The superposition of a number of fundamental transformations can be compactly formulated in the vectorial fundamental transformation which in turn has a nice geometrical interpretation for quadrilateral lattices [7].

The discrete vectorial fundamental transformation [7,13] is given by

$$
\begin{array}{ll}
Q_{i j}^{\prime}=Q_{i j}-\boldsymbol{\Phi}_{j}^{*} \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1} \boldsymbol{\Phi}_{i} & i, j=1, \ldots, N \quad i \neq j \\
H_{i}^{\prime}=H_{i}-\boldsymbol{\Phi}_{i}^{*} \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1} \Omega(\boldsymbol{\Phi}, H) & i=1, \ldots, N \\
\mathfrak{C}_{i}^{\prime}=\mathfrak{C}_{i}-\Omega\left(\mathfrak{C}, \boldsymbol{\Phi}^{*}\right) \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1} \boldsymbol{\Phi}_{i} & i=1, \ldots, N \\
\boldsymbol{x}^{\prime}=\boldsymbol{x}-\Omega\left(\mathfrak{C}, \boldsymbol{\Phi}^{*}\right) \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1} \Omega(\boldsymbol{\Phi}, H)
\end{array}
$$

These are data for a new quadrilateral lattice \boldsymbol{x}^{\prime} as long as $\boldsymbol{\Phi}_{i} \in V, V$ being a linear space and $\boldsymbol{\Phi}_{i}^{*} \in V^{*}$ being the dual of V, are solutions of (1)

$$
\begin{equation*}
\Delta_{j} \boldsymbol{\Phi}_{i}=\left(T_{j} Q_{i j}\right) \boldsymbol{\Phi}_{j} \tag{7}
\end{equation*}
$$

and (2)

$$
\begin{equation*}
\Delta_{j} \boldsymbol{\Phi}_{i}^{*}=Q_{j i} T_{j} \boldsymbol{\Phi}_{j}^{*} \tag{8}
\end{equation*}
$$

respectively. The linear operator $\Omega\left(\zeta, \xi^{*}\right): W \rightarrow V$ is defined by the compatible equations:

$$
\begin{equation*}
\Delta_{i} \Omega\left(\zeta, \xi^{*}\right)=\zeta_{i} \otimes\left(T_{i} \xi_{i}^{*}\right) \quad i=1, \ldots, N . \tag{9}
\end{equation*}
$$

When the data defining the fundamental transformation satisfy

$$
\begin{aligned}
& \boldsymbol{\Phi}_{i}=\left(\Omega\left(\mathfrak{C}, \boldsymbol{\Phi}^{*}\right)+T_{i} \Omega\left(\mathfrak{C}, \boldsymbol{\Phi}^{*}\right)\right)^{\tau} \mathfrak{C}_{i} \quad i=1, \ldots, N \\
& \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)+\Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{\tau}=2 \Omega\left(\mathfrak{C}, \boldsymbol{\Phi}^{*}\right)^{\tau} \Omega\left(\mathfrak{C}, \boldsymbol{\Phi}^{*}\right)
\end{aligned}
$$

where $A^{\tau}:=I_{p, q} A^{\mathrm{t}} I_{p, q}$, the transformation preserves the pseudo-circular reduction [4,10-12].

3. Transformation of the first potentials and of τ-functions

We now derive how the first potentials and τ-functions transform under a vectorial fundamental transformation.

In order to prove our first proposition, describing the transformation of the first potentials, we need the following two preliminary lemmas.
Lemma 1. The functions $\boldsymbol{\Phi}_{j}^{*}$ satisfy

$$
\begin{equation*}
T_{i} T_{j} \boldsymbol{\Phi}_{i}^{*}=\frac{1}{1-\left(T_{i} Q_{j i}\right)\left(T_{j} Q_{i j}\right)}\left[\left(T_{i} Q_{j i}\right)\left(T_{j} \boldsymbol{\Phi}_{j}^{*}\right)+T_{i} \boldsymbol{\Phi}_{i}^{*}\right] . \tag{10}
\end{equation*}
$$

Proof. The linear system for $\boldsymbol{\Phi}_{j}^{*}$

$$
\Delta_{i} \boldsymbol{\Phi}_{j}^{*}=Q_{i j} T_{i} \boldsymbol{\Phi}_{i}^{*}
$$

can be written as

$$
T_{i} \boldsymbol{\Phi}_{j}^{*}=\boldsymbol{\Phi}_{j}^{*}+Q_{i j} T_{i} \boldsymbol{\Phi}_{i}^{*} .
$$

By applying the T_{j} operator to this relation we obtain

$$
\begin{equation*}
T_{j} T_{i} \boldsymbol{\Phi}_{j}^{*}=T_{j} \boldsymbol{\Phi}_{j}^{*}+\left(T_{j} Q_{i j}\right) T_{j} T_{i} \boldsymbol{\Phi}_{i}^{*} \tag{11}
\end{equation*}
$$

so that, interchanging i and j

$$
T_{j} T_{i} \boldsymbol{\Phi}_{i}^{*}=T_{i} \boldsymbol{\Phi}_{i}^{*}+\left(T_{i} Q_{j i}\right) T_{j} T_{i} \boldsymbol{\Phi}_{j}^{*}
$$

that when inserted in (11) gives

$$
T_{j} T_{i} \boldsymbol{\Phi}_{j}^{*}=T_{j} \boldsymbol{\Phi}_{j}^{*}+\left(T_{j} Q_{i j}\right)\left(T_{i} \boldsymbol{\Phi}_{i}^{*}+\left(T_{i} Q_{j i}\right) T_{j} T_{i} \boldsymbol{\Phi}_{j}^{*}\right)
$$

Hence

$$
\left(1-\left(T_{j} Q_{i j}\right)\left(T_{i} Q_{j i}\right)\right) T_{j} T_{i} \boldsymbol{\Phi}_{j}^{*}=T_{j} \boldsymbol{\Phi}_{j}^{*}+\left(T_{j} Q_{i j}\right) T_{i} \boldsymbol{\Phi}_{i}^{*}
$$

and (10) follows.

Lemma 2.

(1) For any vector $v \in V$

$$
\begin{equation*}
\left(T_{j} \boldsymbol{\Phi}_{j}^{*}\right)\left(T_{j} \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1}\right) v=\frac{\left(T_{j} \boldsymbol{\Phi}_{j}^{*}\right) \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1} v}{1+\left(T_{j} \boldsymbol{\Phi}_{j}^{*}\right) \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1} \boldsymbol{\Phi}_{j}} \tag{12}
\end{equation*}
$$

(2) We have

$$
\begin{align*}
T_{j} \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1} & =\Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1} \\
& -\frac{1}{1+\left(T_{j} \boldsymbol{\Phi}_{j}^{*}\right) \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1} \boldsymbol{\Phi}_{j}}\left[\Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1} \boldsymbol{\Phi}_{j}\right] \otimes\left[\left(T_{j} \boldsymbol{\Phi}_{j}^{*}\right) \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1}\right] . \tag{13}
\end{align*}
$$

Proof.

(1) As we have $\Delta_{j} \Omega^{-1}=-\Omega^{-1}\left(\Delta_{j} \Omega\right) T_{j} \Omega^{-1}$, using (9) we deduce $T_{j} \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1}=\Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1}-\Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1} \boldsymbol{\Phi}_{j} \otimes\left(T_{j} \boldsymbol{\Phi}_{j}^{*}\right) T_{j} \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1}$.
Contracting (14) with $T_{j} \boldsymbol{\Phi}_{j}^{*}$ and v it follows that

$$
\begin{aligned}
&\left(T_{j} \boldsymbol{\Phi}_{j}^{*}\right) T_{j} \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1} v=\left(T_{j} \boldsymbol{\Phi}_{j}^{*}\right) \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1} v \\
& \quad-\left[\left(T_{j} \boldsymbol{\Phi}_{j}^{*}\right) \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1} \boldsymbol{\Phi}_{j}\right]\left[\left(T_{j} \boldsymbol{\Phi}_{j}^{*}\right)\left(T_{j} \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1}\right) v\right]
\end{aligned}
$$

so that

$$
\left(1+\left(T_{j} \boldsymbol{\Phi}_{j}^{*}\right) \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1} \boldsymbol{\Phi}_{j}\right)\left(T_{j} \boldsymbol{\Phi}_{j}^{*}\right) T_{j} \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1} v=\left(T_{j} \boldsymbol{\Phi}_{j}^{*}\right) \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1} v
$$

and (12) follows.
(2) We now contract (14) with v^{*} and v to obtain

$$
v^{*}\left(T_{j} \Omega\left(\boldsymbol{\Phi}, \mathbf{\Phi}^{*}\right)^{-1}\right) v=v^{*} \Omega\left(\mathbf{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1} v-\left[v^{*} \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1} \mathbf{\Phi}_{j}\right]\left[\left(T_{j} \boldsymbol{\Phi}_{j}^{*}\right) T_{j} \Omega\left(\mathbf{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1} v\right] .
$$

Now using (12) we deduce (13).

We are now ready to describe the behaviour of the first potentials under vectorial fundamental transformations.

Proposition 1. The first potentials transform according to

$$
\begin{equation*}
\rho_{i}^{\prime}=\rho_{i}\left(1+\left(T_{i} \boldsymbol{\Phi}_{i}^{*}\right) \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1} \mathbf{\Phi}_{i}\right) . \tag{15}
\end{equation*}
$$

Proof. For the proof of this proposition we introduce the following notation:
$A_{i j}:=1-\left(T_{j} Q_{i j}\right)\left(T_{i} Q_{j i}\right) \quad \gamma_{j}:=1+a_{j j} \quad a_{i j}:=\left(T_{i} \boldsymbol{\Phi}_{i}^{*}\right) \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1} \boldsymbol{\Phi}_{j}$.
On the one hand we have

$$
T_{j} \gamma_{i}=1+\left(T_{i} T_{j} \boldsymbol{\Phi}_{i}^{*}\right)\left(T_{j} \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1}\right) T_{j} \boldsymbol{\Phi}_{i},
$$

from which, using (10), (14) and $\Delta_{j} \Phi_{i}=\left(T_{j} Q_{i j}\right) \Phi_{j}$, we derive

$$
\begin{aligned}
T_{j} \gamma_{i}=1+\frac{1}{A_{i j} \gamma_{j}} & \left(\left[\left(T_{i} Q_{j i}\right)\left(T_{j} \boldsymbol{\Phi}_{j}^{*}\right)+T_{i} \boldsymbol{\Phi}_{i}^{*}\right]\right. \\
& \left.\times \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1}\left[\gamma_{j}-\boldsymbol{\Phi}_{j} \otimes\left(T_{j} \boldsymbol{\Phi}_{j}^{*}\right) \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1}\right]\left[\left(T_{j} Q_{i j}\right) \boldsymbol{\Phi}_{j}+\boldsymbol{\Phi}_{i}\right]\right) .
\end{aligned}
$$

Expanding the above products we obtain

$$
\begin{aligned}
& T_{j} \gamma_{i}=1+\frac{1}{A_{i j} \gamma_{j}}\left(\left(T_{i} Q_{j i}\right)\left(T_{j} Q_{i j}\right)\left(\gamma_{j}-a_{j j}\right) a_{j j}\right. \\
& \left.\quad+\left(T_{j} Q_{i j}\right)\left(\gamma_{j}-a_{j j}\right) a_{i j}+\left(T_{i} Q_{j i}\right)\left(\gamma_{j}-a_{j j}\right) a_{j i}+\gamma_{j} a_{i i}-a_{i j} a_{j i}\right)
\end{aligned}
$$

Now, as $\gamma_{j}-a_{j j}=1$ we have

$$
\begin{aligned}
T_{j} \gamma_{i}=\frac{1}{A_{i j} \gamma_{j}} & \left(1-\left(T_{i} Q_{j i}\right)\left(T_{j} Q_{i j}\right)\right)\left(1+a_{j j}\right)+\left(T_{i} Q_{j i}\right)\left(T_{j} Q_{i j}\right) a_{j j} \\
& \left.+\left(T_{j} Q_{i j}\right) a_{i j}+\left(T_{i} Q_{j i}\right) a_{j i}+\left(1+a_{j j}\right) a_{i i}-a_{i j} a_{j i}\right)
\end{aligned}
$$

Then, we deduce
$A_{i j} \frac{T_{j} \gamma_{i}}{\gamma_{i}}=\frac{1}{\gamma_{i} \gamma_{j}}\left(1-\left(T_{i} Q_{j i}\right)\left(T_{j} Q_{i j}\right)+\left(T_{j} Q_{i j}\right) a_{i j}+\left(T_{i} Q_{j i}\right) a_{j i}\right.$

$$
\left.+a_{j j}+a_{i i}+a_{i i} a_{j j}-a_{i j} a_{j i}\right)
$$

On the other hand we have

$$
\begin{align*}
T_{j} Q_{i j}^{\prime} & =T_{j} Q_{i j}-\left(T_{j} \boldsymbol{\Phi}_{j}^{*}\right)\left(T_{j} \Omega\left(\mathbf{\Phi}, \mathbf{\Phi}^{*}\right)^{-1}\right)\left(T_{j} \boldsymbol{\Phi}_{i}\right) \\
& =T_{j} Q_{i j}-\left(T_{j} \mathbf{\Phi}_{j}^{*}\right) \Omega\left(\mathbf{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1}\left(\left(T_{j} Q_{i j}\right) \mathbf{\Phi}_{j}+\mathbf{\Phi}_{i}\right) \frac{1}{\gamma_{j}} \\
& =\frac{\left(T_{j} Q_{i j}\right)-a_{j i}}{\gamma_{j}} \tag{16}
\end{align*}
$$

Thus,

$$
\begin{gathered}
1-\left(T_{j} Q_{i j}^{\prime}\right)\left(T_{i} Q_{j i}^{\prime}\right)=1-\frac{1}{\gamma_{i} \gamma_{j}}\left(\left(T_{j} Q_{i j}\right)-a_{j i}\right)\left(\left(T_{i} Q_{j i}\right)-a_{i j}\right) \\
=\frac{1}{\gamma_{i} \gamma_{j}}\left(1+a_{i i}+a_{j j}+a_{i i} a_{j j}-\left(T_{i} Q_{j i}\right)\left(T_{j} Q_{i j}\right)\right. \\
\left.+a_{i j}\left(T_{j} Q_{i j}\right)+a_{j i}\left(T_{i} Q_{j i}\right)-a_{j i} a_{i j}\right)
\end{gathered}
$$

and we conclude

$$
1-\left(T_{j} Q_{i j}^{\prime}\right)\left(T_{i} Q_{j i}^{\prime}\right)=\left(1-\left(T_{j} Q_{i j}\right)\left(T_{i} Q_{j i}\right)\right) \frac{T_{j} \gamma_{i}}{\gamma_{i}}
$$

Hence, recalling (3) we deduce

$$
\frac{T_{j} \rho_{i}^{\prime}}{\rho_{i}^{\prime}}=1-\left(T_{j} Q_{i j}^{\prime}\right)\left(T_{i} Q_{j i}^{\prime}\right)=\frac{T_{j}\left(\rho_{i} \gamma_{i}\right)}{\rho_{i} \gamma_{i}}
$$

and therefore we can choose

$$
\rho_{i}^{\prime}=\rho_{i} \gamma_{i}
$$

We now show that the τ-functions transform according to a very simple rule.
Proposition 2. The τ-function transforms according to

$$
\tau^{\prime}=\tau \operatorname{det} \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)
$$

Proof. We first observe that

$$
a_{i i}=\operatorname{tr}\left(\Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1} \Delta_{i} \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)\right)
$$

Secondly, if we denote the rows of $\Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)$ as $\boldsymbol{\Omega}_{i}$-which we consider now as elements of V^{*}-we know that

$$
\operatorname{det} \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)=\operatorname{Det}\left(\boldsymbol{\Omega}_{1}, \ldots, \boldsymbol{\Omega}_{d}\right)
$$

where $d=\operatorname{dim} V$, and Det is a skew multi-linear form on V^{*}. Thus, taking into account the discrete Leibnitz rule for the difference operator Δ_{i} we can write

$$
\Delta_{i} \operatorname{det} \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)=\sum_{k=1}^{d} \operatorname{Det}\left(T_{i} \boldsymbol{\Omega}_{1}, \ldots, T_{i} \boldsymbol{\Omega}_{k-1}, \Delta_{i} \boldsymbol{\Omega}_{k}, \boldsymbol{\Omega}_{k+1}, \ldots, \boldsymbol{\Omega}_{d}\right)
$$

But, as we have $T_{i} \boldsymbol{\Omega}_{k}=\boldsymbol{\Omega}_{k}+\left(\boldsymbol{\Phi}_{i}\right)_{k} T_{i} \boldsymbol{\Phi}_{i}^{*}$, where $\left(\boldsymbol{\Phi}_{i}\right)_{k}$ is the k th component of $\boldsymbol{\Phi}_{i}$, we have $\operatorname{Det}\left(T_{i} \boldsymbol{\Omega}_{1}, \ldots, T_{i} \boldsymbol{\Omega}_{k-1}, \Delta_{i} \boldsymbol{\Omega}_{k}, \boldsymbol{\Omega}_{k+1}, \ldots, \boldsymbol{\Omega}_{d}\right)=\operatorname{Det}\left(\boldsymbol{\Omega}_{1}, \ldots, \boldsymbol{\Omega}_{k-1}, \Delta_{i} \boldsymbol{\Omega}_{k}, \boldsymbol{\Omega}_{k+1}, \ldots, \boldsymbol{\Omega}_{d}\right)$. Thus,

$$
\Delta_{i} \operatorname{det} \boldsymbol{\Omega}\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)=\sum_{k=1}^{d} \operatorname{Det}\left(\boldsymbol{\Omega}_{1}, \ldots, \boldsymbol{\Omega}_{k-1}, \Delta_{i} \boldsymbol{\Omega}_{k}, \boldsymbol{\Omega}_{k+1}, \ldots, \boldsymbol{\Omega}_{d}\right)
$$

and using the Cramer rule we conclude

$$
\frac{\Delta_{i} \operatorname{det} \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)}{\operatorname{det} \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)}=\operatorname{tr}\left(\Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1} \Delta_{i} \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)\right)
$$

Therefore

$$
\frac{T_{i} \operatorname{det} \Omega\left(\mathbf{\Phi}, \mathbf{\Phi}^{*}\right)}{\operatorname{det} \Omega\left(\boldsymbol{\Phi}, \mathbf{\Phi}^{*}\right)}=1+a_{i i}
$$

Then, recalling the previous proposition we deduce that

$$
\frac{T_{i} \tau^{\prime}}{\tau^{\prime}}=\frac{T_{i}\left(\tau \operatorname{det} \Omega\left(\mathbf{\Phi}, \mathbf{\Phi}^{*}\right)\right)}{\tau \operatorname{det} \Omega\left(\boldsymbol{\Phi}, \mathbf{\Phi}^{*}\right)}
$$

and the proposition follows.

4. Vectorial fundamental transformations for symmetric lattices and pseudo-Egorov lattices

For a symmetric lattice we have:
Lemma 3. Given a solution Φ^{*} of (8) then a solution $\boldsymbol{\Phi}$ of (7) can be chosen so that

$$
A \rho_{i}\left(T_{i} \boldsymbol{\Phi}_{i}^{*}\right)^{\mathrm{t}}=\boldsymbol{\Phi}_{i}
$$

with A an arbitrary linear operator over V. With this choice of the transformation it is consistent to take the potential $\Omega\left(\boldsymbol{\Phi}, \Phi^{*}\right)$ fulfilling the relation

$$
\Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right) A^{\mathrm{t}}=A \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{\mathrm{t}} .
$$

Proof. We have

$$
\Delta_{j} \boldsymbol{\Phi}_{i}=A\left[\left(T_{j} \rho_{i}\right)\left(T_{j} T_{i} \boldsymbol{\Phi}_{i}^{*}\right)-\rho_{i} T_{i} \boldsymbol{\Phi}_{i}^{*}\right]^{\mathrm{t}}
$$

now from (3) and (10) we deduce

$$
\Delta_{j} \boldsymbol{\Phi}_{i}=A\left[\rho_{i}\left(T_{i} Q_{j i}\right)\left(T_{j} \boldsymbol{\Phi}_{j}^{*}\right)\right]^{\mathrm{t}}
$$

and using (5) we obtain (7) for $\boldsymbol{\Phi}_{i}$. Now, using (9), we compute

$$
\Delta_{i}\left(\Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right) A^{\mathrm{t}}-A \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{\mathrm{t}}\right)=A \rho_{i}\left(T_{i} \boldsymbol{\Phi}_{i}^{*}\right)^{\mathrm{t}} \otimes T_{i} \boldsymbol{\Phi}_{i}^{*} A^{\mathrm{t}}-A \rho_{i}\left(T_{i} \boldsymbol{\Phi}_{i}^{*}\right)^{\mathrm{t}} \otimes T_{i} \boldsymbol{\Phi}_{i}^{*} A^{\mathrm{t}}=0
$$

and the constraint

$$
\Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right) A^{\mathrm{t}}=A \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{\mathrm{t}}
$$

holds for all points of the lattice whenever it is true at a single point of the lattice.
The next proposition gives sufficient conditions on the transformation data to ensure that a vectorial fundamental transformation of a symmetric lattice gives a symmetric lattice.

Proposition 3. Assume that the transformation data satisfy

$$
\begin{align*}
& A \rho_{i}\left(T_{i} \boldsymbol{\Phi}_{i}^{*}\right)^{\mathrm{t}}=\boldsymbol{\Phi}_{i} \tag{17}\\
& \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right) A^{\mathrm{t}}=A \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{\mathrm{t}} \tag{18}
\end{align*}
$$

Then,

$$
\rho_{j}^{\prime} T_{j} Q_{i j}^{\prime}=\rho_{i}^{\prime} T_{i} Q_{j i}^{\prime}
$$

Proof. From (16) we know that

$$
\gamma_{j} T_{j} Q_{i j}^{\prime}=\left(T_{j} Q_{i j}\right)-a_{j i} .
$$

Thus, using proposition 1 we derive

$$
\rho_{j}^{\prime} T_{j} Q_{i j}^{\prime}=\rho_{j} T_{j} Q_{i j}-\rho_{j}\left(T_{j} \boldsymbol{\Phi}_{j}^{*}\right) \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1} \boldsymbol{\Phi}_{i}
$$

and from (17) we deduce

$$
\rho_{j}^{\prime} T_{j} Q_{i j}^{\prime}=\rho_{j} T_{j} Q_{i j}-\boldsymbol{\Phi}_{j}^{\mathrm{t}} \Lambda \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1} \boldsymbol{\Phi}_{i}
$$

Thus,

$$
\rho_{j}^{\prime}\left(T_{j} Q_{i j}^{\prime}\right)-\rho_{i}^{\prime}\left(T_{i} Q_{j i}^{\prime}\right)=\boldsymbol{\Phi}_{j}^{\mathrm{t}}\left[\left(\Lambda \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1}\right)^{\mathrm{t}}-\Lambda \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{-1}\right] \boldsymbol{\Phi}_{i}
$$

and the proposition follows from (18).
Following [9] a pseudo-Egorov lattice is characterized by the identity

$$
\rho_{i}^{\mathrm{S}}=\rho_{i}^{\mathrm{C}}
$$

between the symmetric first potential ρ_{i}^{S} and the pseudo-circular one ρ_{i}^{C}. As the new potentials ρ_{i}^{\prime} are related to the initial ones ρ_{i} by (15) then

$$
\rho_{i}^{\mathrm{S}^{\prime}}=\rho_{i}^{\mathrm{C}^{\prime}} .
$$

This implies that given a pseudo-Egorov lattice, a fundamental transformation over it preserving both symmetric and pseudo-circular character gives a new pseudo-Egorov lattice. Thus:

Proposition 4. If the transformation data satisfies

$$
\begin{aligned}
& \boldsymbol{\Phi}_{i}=A \rho_{i}\left(T_{i} \boldsymbol{\Phi}_{i}^{*}\right)^{\mathrm{t}} \\
& \boldsymbol{\Phi}_{i}=\left(\Omega\left(\mathfrak{C}, \boldsymbol{\Phi}^{*}\right)+T_{i} \Omega\left(\mathfrak{C}, \boldsymbol{\Phi}^{*}\right)\right)^{\tau} \mathfrak{C}_{i} \\
& \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right) A^{\mathrm{t}}=A \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)^{\mathrm{t}} \\
& \Omega\left(\boldsymbol{\Phi}, \boldsymbol{\Phi}^{*}\right)=\Omega\left(\mathfrak{C}, \boldsymbol{\Phi}^{*}\right)^{\tau} \Omega\left(\mathfrak{C}, \boldsymbol{\Phi}^{*}\right)
\end{aligned}
$$

then the pseudo-Egorov reduction is preserved.

Acknowledgment

This work was partially supported by Dirección General de Enseñanza Superior e Investigación Científica proyecto PB98-0821.

References

[1] Bobenko A 1996 Symmetries and Integrability of Difference Equations II ed P Clarkson and F Nijhoff (Cambridge: Cambridge University Press)
Bobenko A and Pinkall U 1996 J. Diff. Geom. 43527
Bobenko A and Pinkall U 1996 J. Reine Angew. Math. 475187
Bobenko A and Schief W K 1998 Discrete Integrable Geometry and Physics ed A Bobenko and R Seiler (Oxford: Oxford University Press)
[2] Bogdanov L V and Konopelchenko B G 1995 J. Phys. A: Math. Gen. 28 L173-8
[3] Ciesliński J, Doliwa A and Santini P M 1997 Phys. Lett. A 235480
[4] Doliwa A 2000 J. Geom. Phys. 30169
[5] Doliwa A, Mañas M, Martínez Alonso L, Medina E and Santini P M 1999 J. Phys. A: Math. Gen. 321197
[6] Doliwa A, Manakov S V and Santini P M 1998 Commun. Math. Phys. 1961
[7] Doliwa A, Santini P M and Mañas M 2000 J. Math. Phys. 41944
[8] Doliwa A and Santini P M 1997 Phys. Lett. A 233365
[9] Doliwa A and Santini P M 2000 J. Geom. Phys. 3660
[10] Konopelchenko B G and Schief W K 1998 Proc. R. Soc. A 4543075
[11] Liu Q P and Mañas M 1998 Phys. Lett. A 249424
[12] Mañas M J. Math. Phys. at press
[13] Mañas M, Doliwa A and Santini P M 1997 Phys. Lett. A 232365
[14] Martin R R 1986 The Mathematics of Surfaces ed J Gregory (Oxford: Clarendon) Nutborne A W 1986 The Mathematics of Surfaces ed J Gregory (Oxford: Clarendon)
[15] Sauer R 1970 Differenzengeometrie (Berlin: Springer)

