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Abstract
We find the behaviour of first potentials and τ -functions for quadrilateral
lattices under vectorial fundamental transformations. We also give those
transformations which preserve the symmetric and pseudo-Egorov reductions.

PACS numbers: 05.50.+q, 02.30.-f

1. Introduction

Integrable discrete equations seems to be essential in the understanding of integrable systems.
On the one hand many integrable nonlinear PDEs are continuous limits of integrable P�Es
(partial difference equations). On the other hand many of these integrable nonlinear PDEs are
reductions or connected with differential geometry, in particular with the theory of conjugate
nets and its reductions. Sometime ago the German geometer Sauer discussed for example
discrete pseudo-spherical surfaces. Recently, the group of Bobenko and Pinkall and the group
of Doliwa and Santini have given to the theory of integrable lattices an almost closed form.
These integrable lattices contain as reductions many of the mentioned discrete integrable
systems and constitute a cornerstone in the theory of integrable systems. Among these lattices
one finds the quadrilateral, circular, Egorov and asymptotic lattices.

In this paper we investigate how the first potentials and τ -functions for quadrilateral
lattices transform under fundamental transformations. Using this information we search for
those fundamental transformations which reduce to symmetric lattices and pseudo-Egorov
lattices. The layout of the paper is as follows: in section 2 we review some well known
basic aspects of quadrilateral lattices, reductions and transformations. In section 3 we
present the transformation of both first potentials and τ -functions under vectorial fundamental
transformations. Finally, section 4 is devoted to characterizing those vectorial fundamental
transformations preserving symmetric and pseudo-Egorov lattices.
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2. Quadrilateral lattices

Among the N -dimensional lattices x : Z
N → R

N there is a distinguished class for which the
elementary quadrilaterals are planar [7,8,15]: the so-called quadrilateral lattice. The planarity
condition can be expressed by the linear equation for suitably renormalized tangent vectors
Ci (n) ∈ R

N

�jCi = (TjQij )Cj i, j = 1, . . . , N i �= j (1)

with its compatibility conditions being the following discrete Darboux equations [2]:

�kQij = (TkQik)Qkj i, j and k different.

Here we are using the notation �j := Tj − 1 where Tjf (n1, . . . , nN) =
f (n1, . . . , nj−1, nj + 1, nj+1, . . . , nN). The points x of the lattice satisfy

�ix = (TiHi)Ci i = 1, . . . , N

where the Hi fulfil

�iHj = QijTiHi i, j = 1, . . . , N i �= j. (2)

In the above formulae, Ti is the translation operator in the discrete variable ni and �i = Ti −1
is the corresponding partial difference operator.

2.1. Backward representation, first potentials and τ -functions

As was explained in [9] there is an equivalent description in terms of backward geometrical
objects, C̃i , H̃i , Q̃ij which satisfy

�iC̃j = Q̃ijTiC̃i �j H̃i = (Tj Q̃ij )H̃j .

There exist first potentials ρi , i = 1, . . . , N , [9] such that

Ci = −ρiTiC̃i TiHi = − 1

ρi

H̃i .

Moreover, as was proven in [9] we have

ρjTj Q̃ij = ρiTiQji

where the first potentials ρi are characterized by

Tjρi

ρi

= 1 − (TiQji)(TjQij ). (3)

The above equation ensures, as was noticed in [9], the existence of a second potential τ such
that

ρi = Tiτ

τ

which essentially is the τ -function of the quadrilateral lattice as was discussed in [5].

2.2. Reduced lattices

Quadrilateral lattices x : Z
N → R

N for which each quadrilateral is inscribed in a circle are
called circular or cyclid lattices [1, 3, 6, 10, 14]. It can be shown that the constraint

Ci · Ti(Cj ) + Cj · Tj (Ci ) = 0 i �= j (4)

for the tangent vectors is the equivalent circularity property. The first potentials for the circular
lattices satisfy ρi = ‖Ci‖2 [9]. In [9] the symmetric and Egorov lattices were introduced—the
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Egorov lattice was also considered by Wolfang Schief. The symmetric lattice appears when
backward and forward rotation coefficients are the same, which can be cast in the condition

(TiQji)(TjQkj )(TkQik) = (TjQij )(TiQki)(TkQjk) i, j and k different.

This symmetric case is also characterized by the following relation among first potentials and
rotation coefficients:

ρjTjQij = ρiTiQji . (5)

A circular, symmetric and diagonal invariant lattice is called an Egorov lattice; it was
proven that Egorov lattices are characterized by

Ci · Ti(Cj ) = 0 i �= j. (6)

Finally, in [12] pseudo-circular and pseudo-Egorov lattices in pseudo-Euclidean space
Rp,q , p + q = N , were introduced. Here, we have a non-degenerate symmetric bilinear form

X·X̃ :=
N∑

i=1

εiXiX̃i with εi :=
{

1 i = 1, . . . , p

−1 i = p + 1, . . . , p + q

which can be written as

X·X̃ = (X1, . . . , XN)Ip,q


 X̃1

...

X̃N




with

Ip,q := diag(ε1, . . . , εN).

The pseudo-circular and pseudo-Egorov lattices are defined as in (4) and (6) but replacing the
Euclidean scalar product by the pseudo-Euclidean scalar product has been introduced. As was
pointed out to me by Adam Doliwa during this SIDE IV conference, these pseudo-circular
lattices should correspond, through a convenient stereographic projection, to lattices in quadric
surfaces as in [4].

2.3. The discrete fundamental transformation

The fundamental transformation of Jonas for conjugate nets was discretized to quadrilateral
lattices by Doliwa, Mañas and Santini [7, 13]. The superposition of a number of fundamental
transformations can be compactly formulated in the vectorial fundamental transformation
which in turn has a nice geometrical interpretation for quadrilateral lattices [7].

The discrete vectorial fundamental transformation [7, 13] is given by

Q′
ij = Qij − Φ∗

j�(Φ,Φ∗)−1Φi i, j = 1, . . . , N i �= j

H ′
i = Hi − Φ∗

i �(Φ,Φ∗)−1�(Φ, H) i = 1, . . . , N

C′
i = Ci − �(C,Φ∗)�(Φ,Φ∗)−1Φi i = 1, . . . , N

x′ = x − �(C,Φ∗)�(Φ,Φ∗)−1�(Φ, H).

These are data for a new quadrilateral lattice x′ as long as Φi ∈ V , V being a linear space and
Φ∗

i ∈ V ∗ being the dual of V , are solutions of (1)

�jΦi = (TjQij )Φj (7)

and (2)

�jΦ∗
i = QjiTjΦ∗

j (8)
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respectively. The linear operator �(ζ, ξ∗) : W → V is defined by the compatible equations:

�i�(ζ, ξ∗) = ζi ⊗ (Tiξ
∗
i ) i = 1, . . . , N. (9)

When the data defining the fundamental transformation satisfy

Φi = (�(C,Φ∗) + Ti�(C,Φ∗))τCi i = 1, . . . , N

�(Φ,Φ∗) + �(Φ,Φ∗)τ = 2�(C,Φ∗)τ�(C,Φ∗)

where Aτ := Ip,qA
tIp,q , the transformation preserves the pseudo-circular reduction [4,10–12].

3. Transformation of the first potentials and of τ -functions

We now derive how the first potentials and τ -functions transform under a vectorial fundamental
transformation.

In order to prove our first proposition, describing the transformation of the first potentials,
we need the following two preliminary lemmas.

Lemma 1. The functions Φ∗
j satisfy

TiTjΦ∗
i = 1

1 − (TiQji)(TjQij )
[(TiQji)(TjΦ∗

j ) + TiΦ∗
i ]. (10)

Proof. The linear system for Φ∗
j

�iΦ∗
j = QijTiΦ∗

i

can be written as

TiΦ∗
j = Φ∗

j + QijTiΦ∗
i .

By applying the Tj operator to this relation we obtain

TjTiΦ∗
j = TjΦ∗

j + (TjQij )TjTiΦ∗
i (11)

so that, interchanging i and j

TjTiΦ∗
i = TiΦ∗

i + (TiQji)TjTiΦ∗
j

that when inserted in (11) gives

TjTiΦ∗
j = TjΦ∗

j + (TjQij )(TiΦ∗
i + (TiQji)TjTiΦ∗

j ).

Hence

(1 − (TjQij )(TiQji))TjTiΦ∗
j = TjΦ∗

j + (TjQij )TiΦ∗
i

and (10) follows. �
Lemma 2.

(1) For any vector v ∈ V

(TjΦ∗
j )(Tj�(Φ,Φ∗)−1)v = (TjΦ∗

j )�(Φ,Φ∗)−1v

1 + (TjΦ∗
j )�(Φ,Φ∗)−1Φj

. (12)

(2) We have

Tj�(Φ,Φ∗)−1 = �(Φ,Φ∗)−1

− 1

1 + (TjΦ∗
j )�(Φ,Φ∗)−1Φj

[�(Φ,Φ∗)−1Φj ] ⊗ [(TjΦ∗
j )�(Φ,Φ∗)−1].

(13)
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Proof.

(1) As we have �j�
−1 = −�−1(�j�)Tj�

−1, using (9) we deduce

Tj�(Φ,Φ∗)−1 = �(Φ,Φ∗)−1 − �(Φ,Φ∗)−1Φj ⊗ (TjΦ∗
j )Tj�(Φ,Φ∗)−1. (14)

Contracting (14) with TjΦ∗
j and v it follows that

(TjΦ∗
j )Tj�(Φ,Φ∗)−1v = (TjΦ∗

j )�(Φ,Φ∗)−1v

−[(TjΦ∗
j )�(Φ,Φ∗)−1Φj ][(TjΦ∗

j )(Tj�(Φ,Φ∗)−1)v]

so that

(1 + (TjΦ∗
j )�(Φ,Φ∗)−1Φj )(TjΦ∗

j )Tj�(Φ,Φ∗)−1v = (TjΦ∗
j )�(Φ,Φ∗)−1v

and (12) follows.
(2) We now contract (14) with v∗ and v to obtain

v∗(Tj�(Φ,Φ∗)−1)v = v∗�(Φ,Φ∗)−1v − [v∗�(Φ,Φ∗)−1Φj ][(TjΦ∗
j )Tj�(Φ,Φ∗)−1v].

Now using (12) we deduce (13).

�
We are now ready to describe the behaviour of the first potentials under vectorial

fundamental transformations.

Proposition 1. The first potentials transform according to

ρ ′
i = ρi(1 + (TiΦ∗

i )�(Φ,Φ∗)−1Φi ). (15)

Proof. For the proof of this proposition we introduce the following notation:

Aij := 1 − (TjQij )(TiQji) γj := 1 + ajj aij := (TiΦ∗
i )�(Φ,Φ∗)−1Φj .

On the one hand we have

Tjγi = 1 + (TiTjΦ∗
i )(Tj�(Φ,Φ∗)−1)TjΦi ,

from which, using (10), (14) and �jΦi = (TjQij )Φj , we derive

Tjγi = 1 +
1

Aijγj

([
(TiQji)(TjΦ∗

j ) + TiΦ∗
i

]
×�(Φ,Φ∗)−1

[
γj − Φj ⊗ (TjΦ∗

j )�(Φ,Φ∗)−1
][

(TjQij )Φj + Φi

])
.

Expanding the above products we obtain

Tjγi = 1 +
1

Aijγj

(
(TiQji)(TjQij )(γj − ajj )ajj

+(TjQij )(γj − ajj )aij + (TiQji)(γj − ajj )aji + γjaii − aij aji

)
.

Now, as γj − ajj = 1 we have

Tjγi = 1

Aijγj

(
(1 − (TiQji)(TjQij ))(1 + ajj ) + (TiQji)(TjQij )ajj

+(TjQij )aij + (TiQji)aji + (1 + ajj )aii − aij aji

)
.

Then, we deduce

Aij

Tjγi

γi

= 1

γiγj

(1 − (TiQji)(TjQij ) + (TjQij )aij + (TiQji)aji

+ajj + aii + aiiajj − aij aji).
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On the other hand we have

TjQ
′
ij = TjQij − (TjΦ∗

j )(Tj�(Φ,Φ∗)−1)(TjΦi )

= TjQij − (TjΦ∗
j )�(Φ,Φ∗)−1((TjQij )Φj + Φi )

1

γj

= (TjQij ) − aji

γj

. (16)

Thus,

1 − (TjQ
′
ij )(TiQ

′
ji) = 1 − 1

γiγj

((TjQij ) − aji)((TiQji) − aij )

= 1

γiγj

(1 + aii + ajj + aiiajj − (TiQji)(TjQij )

+aij (TjQij ) + aji(TiQji) − ajiaij )

and we conclude

1 − (TjQ
′
ij )(TiQ

′
ji) = (1 − (TjQij )(TiQji))

Tjγi

γi

.

Hence, recalling (3) we deduce

Tjρ
′
i

ρ ′
i

= 1 − (TjQ
′
ij )(TiQ

′
ji) = Tj (ρiγi)

ρiγi

and therefore we can choose

ρ ′
i = ρiγi .

�
We now show that the τ -functions transform according to a very simple rule.

Proposition 2. The τ -function transforms according to

τ ′ = τ det �(Φ,Φ∗).

Proof. We first observe that

aii = tr(�(Φ,Φ∗)−1�i�(Φ,Φ∗)).

Secondly, if we denote the rows of �(Φ,Φ∗) as Ωi—which we consider now as elements of
V ∗—we know that

det �(Φ,Φ∗) = Det(Ω1, . . . ,Ωd)

where d = dim V , and Det is a skew multi-linear form on V ∗. Thus, taking into account the
discrete Leibnitz rule for the difference operator �i we can write

�i det �(Φ,Φ∗) =
d∑

k=1

Det(TiΩ1, . . . , TiΩk−1, �iΩk,Ωk+1, . . . ,Ωd).

But, as we have TiΩk = Ωk + (Φi )kTiΦ∗
i , where (Φi )k is the kth component of Φi , we have

Det(TiΩ1, . . . , TiΩk−1, �iΩk,Ωk+1, . . . ,Ωd) = Det(Ω1, . . . ,Ωk−1, �iΩk,Ωk+1, . . . ,Ωd).

Thus,

�i det �(Φ,Φ∗) =
d∑

k=1

Det(Ω1, . . . ,Ωk−1, �iΩk,Ωk+1, . . . ,Ωd)
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and using the Cramer rule we conclude

�i det �(Φ,Φ∗)
det �(Φ,Φ∗)

= tr(�(Φ,Φ∗)−1�i�(Φ,Φ∗)).

Therefore
Ti det �(Φ,Φ∗)

det �(Φ,Φ∗)
= 1 + aii .

Then, recalling the previous proposition we deduce that

Tiτ
′

τ ′ = Ti(τ det �(Φ,Φ∗))
τ det �(Φ,Φ∗)

and the proposition follows. �

4. Vectorial fundamental transformations for symmetric lattices and pseudo-Egorov
lattices

For a symmetric lattice we have:

Lemma 3. Given a solution Φ∗ of (8) then a solution Φ of (7) can be chosen so that

Aρi(TiΦ∗
i )

t = Φi

with A an arbitrary linear operator over V . With this choice of the transformation it is
consistent to take the potential �(Φ,Φ∗) fulfilling the relation

�(Φ,Φ∗)At = A�(Φ,Φ∗)t.

Proof. We have

�jΦi = A[(Tjρi)(TjTiΦ∗
i ) − ρiTiΦ∗

i ]t

now from (3) and (10) we deduce

�jΦi = A[ρi(TiQji)(TjΦ∗
j )]

t

and using (5) we obtain (7) for Φi . Now, using (9), we compute

�i(�(Φ,Φ∗)At − A�(Φ,Φ∗)t) = Aρi(TiΦ∗
i )

t ⊗ TiΦ∗
i A

t − Aρi(TiΦ∗
i )

t ⊗ TiΦ∗
i A

t = 0

and the constraint

�(Φ,Φ∗)At = A�(Φ,Φ∗)t

holds for all points of the lattice whenever it is true at a single point of the lattice. �

The next proposition gives sufficient conditions on the transformation data to ensure that
a vectorial fundamental transformation of a symmetric lattice gives a symmetric lattice.

Proposition 3. Assume that the transformation data satisfy

Aρi(TiΦ∗
i )

t = Φi (17)

�(Φ,Φ∗)At = A�(Φ,Φ∗)t. (18)

Then,

ρ ′
j TjQ

′
ij = ρ ′

iTiQ
′
ji .
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Proof. From (16) we know that

γjTjQ
′
ij = (TjQij ) − aji .

Thus, using proposition 1 we derive

ρ ′
j TjQ

′
ij = ρjTjQij − ρj (TjΦ∗

j )�(Φ,Φ∗)−1Φi

and from (17) we deduce

ρ ′
j TjQ

′
ij = ρjTjQij − Φt

j��(Φ,Φ∗)−1Φi .

Thus,

ρ ′
j (TjQ

′
ij ) − ρ ′

i (TiQ
′
ji) = Φt

j [(��(Φ,Φ∗)−1)t − ��(Φ,Φ∗)−1]Φi

and the proposition follows from (18). �
Following [9] a pseudo-Egorov lattice is characterized by the identity

ρS
i = ρC

i

between the symmetric first potential ρS
i and the pseudo-circular one ρC

i . As the new potentials
ρ ′

i are related to the initial ones ρi by (15) then

ρS
i

′ = ρC
i

′
.

This implies that given a pseudo-Egorov lattice, a fundamental transformation over it preserving
both symmetric and pseudo-circular character gives a new pseudo-Egorov lattice. Thus:

Proposition 4. If the transformation data satisfies

Φi = Aρi(TiΦ∗
i )

t

Φi = (�(C,Φ∗) + Ti�(C,Φ∗))τCi

�(Φ,Φ∗)At = A�(Φ,Φ∗)t

�(Φ,Φ∗) = �(C,Φ∗)τ�(C,Φ∗)

then the pseudo-Egorov reduction is preserved.
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